

ADAPTIVE INTELLIGENT AUTOMATION OF WELDING, MILLING, AND POLISHING IN AUTOMOBILE AND AVIATION MANUFACTURING

DEVARAMA RAJU . M

Assistant Professor

Department of CSE

*KG Reddy College of Engineering, Hyderabad.,
ex. Cent Govt Computer Executive*

Problem Statement: Present automation in welding ,milling, and polishing operations in automobile and aircraft manufacturing , **not able to control , optimise the operations by the robotic Machines, arms, Legs, Stands, Tool handlers, positioners.** The present system **do not have the dynamic adaptive ,sensitiveness for physical mechanical dynamics ,kinetics** like a human muscle adaptiveness, Bio Mechanics as per the target operation , trajectory and dynamic environment with the obstacles, heat ,vibrations resonance, disturbed machine behaviour action,reaction .

Abstract :

This research paper presents an advanced automation framework using modern AI ML DL , Behaviour models , Transformers architecture , attention mechanism for welding, milling, and polishing operations in automobile and aircraft manufacturing using intelligent robotic arms. The system integrates hydraulic and pneumatic actuation, adaptive PID control enhanced with transform-based modeling, and reinforcement learning. Multi-head attention mechanisms process real-time sensor data such as vibration, dust, thermal variation, and geometric deviations. Classical mathematical foundations including Lagrangian dynamics, Laplace transforms, Fourier analysis, and Taylor series are embedded into the control and learning pipeline to achieve precision, stability, and sustainability.

Keywords:

Industrial Automation, Robotic Arms, Adaptive PID, Reinforcement Learning, Multi-Head Attention, Lagrangian Dynamics, Laplace Transform, Fourier Transform, Taylor Series, ARL - Adaptive Reinforcement Learning, EMHA - Environment Multi Head Attention; FSS - Fusion Sensor Systems ; AI ML - Artificial intelligence, Machine Learning; SDP - Sensor Data Parameters, SDPD- SPD Descriptor, OPV- Output Parameter Value;

1. Introduction :

Modern automobile and aviation industries demand ultra-precise, repeatable, and sustainable manufacturing processes. Welding, milling, and polishing are critical operations requiring dynamic force control, vibration suppression, and adaptive behavior. This paper proposes an integrated cyber-physical architecture combining advanced robotics, control theory, and artificial intelligence.

2. Robotic Arms Design , Architecture , Precise Operations strategy:

The robotic arms consist of multi-degree-of-freedom joints actuated by hydraulic and pneumatic systems. High-pressure sustainable lubricants circulate within the arm to minimize wear and thermal stress. Inlet and outlet pressures are dynamically regulated using adaptive PID controllers.

3. Lagrangian, Laplace Dynamics for Robot Motion prediction, Controlled Dynamics.

The motion of a robotic arm is modeled using Lagrangian mechanics:

$$L(q, \dot{q}) = T(q, \dot{q}) - V(q)$$

where T is kinetic energy and V is potential energy. The Euler–Lagrange equation:

$$\frac{d}{dt}(\partial L / \partial \dot{q}_i) - \partial L / \partial q_i = \tau_i$$

governs joint torques during welding, milling, and polishing operations, ensuring smooth and stable trajectories.

Laplace allows for the calculation of the Transfer Function $\langle H(s) \rangle$, which is the ratio of output (e.g., motor position) to input (e.g., control signal).

4. Adaptive PID with Transform Functions , ARL by EMHA ,for real time goal achievement.

The control input is:

$$u(t) = K_p e(t) + K_i \int e(t) dt + K_d \frac{de(t)}{dt}$$

Laplace transforms convert time-domain dynamics into the frequency domain for stability analysis. Fourier transforms isolate vibration frequencies caused by welding arcs or milling chatter. Taylor series linearize nonlinear force and pressure dynamics around operating points.

Controller Design using Laplace: The PID controller itself is converted into an $\langle s \rangle$ -domain formula:

$$\langle C(s) = K_p + \frac{K_i}{s} + K_d s \rangle$$

Laplace allows engineers to combine the controller and machine models to optimize performance.

5. Adaptive Reinforcement Learning and Machine Behavior Models

Adaptive reinforcement learning agents optimize PID gains and force trajectories to adapt. The reward function , Quality, Policy includes weld , Milling...quality, Operations Rules, Policy , surface roughness, tool wear, and energy efficiency. Mission behavior

models allow robots to adapt to different car or aircraft body geometries.

6. Machine, Environment Behaviour

Multi-Head Attention for Sensor Fusion

Multiple attention heads process heterogeneous sensor inputs:

- Head 1: Structural vibration data
- Head 2: Dust and particle dispersion
- Head 3: Thermal and pressure signals
- Head 4: Vision and CMM measurements
- Head k: k th Machines, Environment Behaviour Attributes,

Note: Depending on Dynamic Environment Behaviour we will have kth Attributes.

Behavior Attention computations:

$$SDP = XW.SDP, SDPD = XW.SPD, OPV = XW.OPV$$

$$\text{Behavior } (SDP, SDPD, OPV) = \text{softmax}(SDP.SDPD^T / \sqrt{d}).OPV$$

This enables contextual awareness and real-time adaptive control.

Note : Depending on the Maths Fundamental Theory, PID Transform functions will change and formulated, depending on this Transform functions and the fusion sensor collected data ,environmental states, relevant RL Multi Agent Models are used. There by finally achieve the target operation with best quality, best performance, best optimized models.

7. Integration of Mathematical Foundations for the Real world Robot arms, Car, Plane, physical, mechanical Dynamics, Kinetics:

Lagrangian equations define physical motion constraints. Laplace transforms ensure control stability. Fourier transforms detect harmful vibration modes. Taylor series provide fast approximations for nonlinear effects. Together, they enhance both classical control and AI-based decision making.

8. Case Studies in the Automotive industry, Aviation Plane manufacturing companies.

Simple case study for welding machine behaviour model PID controller design and development. Of course with the ARL and MHA, FSS,, it will be Designed, Controlled and operated.

Automobile welding lines demonstrated reduced defect rates and smoother weld seams. Aircraft polishing operations show improved aerodynamic surface finish and reduced human intervention.

Simple Main Stages of this Welding, Milling ,Polishing Machine Operations:

- Modeling System Dynamics (Welding/Milling/Polishing)
- Developing the Transfer Function Stability and Performance Tuning using Poles Zeros.
- Disturbance Rejection using Poles Zeros.

9. Conclusion

The proposed framework unifies advanced robotics, control theory, and AI. By embedding classical mathematical theories into modern learning-based systems, manufacturing achieves unprecedented precision, adaptability, and sustainability.

10. My Future Enhanced Researches

10.1 : Incorporate bio mechanic bio engineering technology strategies and AI in controlling system of Taps, valves , Regulators ,electromagnetic coupling systems .

10.2 : In my Next Enhanced Research , Other case studies include the operations of the maglev trains with the trap environment fusion sensors and PID controllers of the train,

10.3 : in part of my enhanced research, Autonomous vehicle driving can be efficiently controlled and stabilized as per day dynamic environment of The road

conditions signal crossings of normal nature and any unexpected crossing by the humans are animals are any other vehicle.

10.4 : In part of my Enhanced Research, Autonomous fire fighting drone operations ,autonomous Drone operations in agriculture and manufacturing in closed , open environment to observe, control , manage and analyse the risk results of dining environmental along with existing work and manufacturing environment.

10.5: My Major Future Research in the transformer, attention models and techniques with the svd , factorization , CUDA kernel optimization, Nvidia GPU , TPU, neuromorphic processors, HW, SW , ISA , Kernel accelerated , optimised computing

10.6 : My further Enhanced Research will be in the bio mechanics, bio engineering (with AI ML DL RL APID, embedded ASIC GPU, TPU, NPU, HW, SW Acceleration ,..) adaptation in the automation of manufacturing.

References

1. Spong et al., Robot Modeling and Control
2. Sutton & Barto, Reinforcement Learning
3. Vaswani et al., Attention Is All You Need
4. Craig, Introduction to Robotics